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Abstract: In this paper, a robust local controller has been designed to balance the power for 

distributed energy resources (DERs) in an islanded microgrid. Three different DER types 

are considered in this study; photovoltaic systems, battery energy storage systems, and 

synchronous generators. Since DER dynamics are nonlinear and uncertain, which may 

destabilize the power system or decrease the performance, distributed robust nonlinear 

controllers are designed for the DERs. They are based on the Lyapunov stabilization theory 

and super-twisting integral sliding mode control which guarantees system stability and 

optimality simultaneously. The reference signals for each DER are generated by a 

supervisory controller as a power management system. The controllers proposed in this 
work are robust, have fast response times, and most importantly, the control signals satisfy 

physical system constraints. The designed controller stability and effectiveness are also 

verified using numerical simulations. 
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1 Introduction1 

UE to increasing electrical power demand, 

renewable energy sources have to be adopted into 

modern power grids. The most common resources 

implemented are solar, wind, and hydroelectric [1]. 

Renewable energy resources and energy storage systems 

can form a microgrid. These grids can operate in 

islanded, disconnected from the main power grid, or 

grid-connected mode. In the first mode, large voltage or 
frequency fluctuations can result in blackouts; hence it 

is necessary for an islanded microgrid to regulate its 

voltage and frequency. 

   Voltages and frequencies in islanded microgrids only 

depend on the distributed energy resources (DERs) 

connected to it. Therefore, the dynamics of each DER 

become very important for islanded microgrid voltage 

and frequency regulations [2]. A common simplifying 

assumption made in islanded microgrid studies is that 
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DERs are ideal and non-dynamic. As a result, initial 

phase voltages and frequencies are expected to be their 

corresponding desired values; in addition, the control 

input for an islanded microgrid is assumed to be the 

DER terminal voltage. Hence, a linear controller for 

islanded microgrid stabilization is only logical when 
linear loads are considered. For instance, in [3] a linear 

H∞ controller is used to stabilize a master DER to 

regulate the microgrid voltage, as proportional-

integral (PI) controllers are adopted to regulate slave 

DERs currents. In [4] where only one DER is 

considered in the microgrid, unmodeled dynamics were 

considered as system uncertainties, and the authors 

designed an H∞ controller to attenuate the unmodeled 

dynamics effects on the system output. Another 

conventional assumption made considering microgrids 

is parallel loads [3, 4]. In [5, 6] a radial structured 

microgrid is regarded and a robust controller is designed 
for the linear system model. In [7], robust frequency 

control of an islanded microgrid is considered; the 

uncertain dynamics are assumed to be linear and 

standard H∞ and μ-synthesis approaches are used to 

design the control law. Linear controllers, e.g. the 

controllers in [3-7], only stabilize nonlinear systems 

locally and there is no guarantee for global stability. 

Therefore, it is important to consider the DER nonlinear 

model and design appropriate controllers to provide 
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global stability. Thus, the system investigated in the 

present study is not linearized and DER dynamics are 

considered. 

   In [2] an islanded microgrid is assumed with two 

photovoltaic systems (PVs) and two battery energy 

storage systems (BESSs) which are connected to the 

microgrid by three-phase inverters. The control inputs 

of inverters are basically several switches. Considering 

the nonlinear dynamics of DERs, some nonlinear 

strategies like feedback linearization [2], [8-11], and 

sliding mode control (SMC) [12] are utilized to provide 
global microgrid stability. Although the inverter control 

signal is bounded, this aspect is normally omitted in 

controller design and stability analysis studies, e.g. [2], 

[8-10]. Considering the constraint on the control signal 

is absolutely necessary and if it is disregarded, the 

switches can even generate power with non-feasible 

control signals. The inverter control signals are either 

On or Off; using the pulse width modulation technique, 

the control signals vary within the [0, 1] interval. Here, 

this constraint is expressed as a constraint in the dq-

frame. 
   There are some researches which deal with microgrid 

power management. The power management system 

generates the reference signals needed by the DGs to 

operate correctly. In [13], a decentralized method is 

used for load sharing and power management in an 

islanded microgrid. In [14], uncertainty is considered in 

the communication links; the authors tried to minimize 

the communications and derived a robust controller 

using the Lyapunov stability theory. However, in this 

manuscript, a simpler but more flexible method is 

presented; the ability to communicate with PVs for 
power management is assumed to be possible by 

adjusting reference signals to obtain maximum power. 

   In [15] a distributed model predictive secondary 

voltage control of islanded microgrids with feedback 

linearization is presented, where first, the nonlinear 

inverter-based DG dynamics are linearized by input-

output feedback linearization method. Then, a linear 

distributed model predictive control (MPC) is adopted 

to implement secondary voltage control. Finally, a PI 

algorithm is used to realize frequency restoration and 

active power sharing. As linearizing dynamics can result 

in loss of valuable information, the proposed method in 
the present study does not linearize system dynamics 

and is further less computationally demanding as 

compared with methods like MPC. 

   Sedghi et al. [16] have designed a controller 

consisting of three cascade connected power, voltage 

and current controllers. The first controller is designed 

based on droop characteristics and the other two based 

on PI controllers. For performance validation, three 

scenarios considering load perturbation, disconnection 

of a DG, and nonlinear loads are investigated. Whereas, 

in this work, DG uncertainties are not considered. 
   Voltage and frequency regulations and active and 

reactive power sharing in islanded microgrids with 

renewable energy sources can be achieved by two-layer 

control strategies. This approach is attempted in [17], 

where the upper-level control determines the power 

generation references to minimize the overall voltage 

deviations while sharing the power. Also, the lower-

level control adjusts the inverter output voltage 

magnitude and angle to track the power reference. 

   In this paper, distributed nonlinear robust controllers 

for PVs, BESSs, and synchronous generators (SGs) are 

designed. The proposed controllers based on Lyapunov 

and sliding mode strategies, systematically meet the 
input constraints. The SG is controlled based on super-

twisting integral sliding mode strategy, which is a 

second-order SMC. The designed controllers are 

simulated separately and together in an islanded 

microgrid for illustration. In contrast to most studies 

where Kd and Kq limitations are disregarded in 

controller designs, these limitations are implemented in 

the present work and their effects on system stability are 

considered. 

   This paper is organized as follows. In Section 2, PV, 

BESS, and SG dynamical models are introduced. 
Controller design for each DER and their stability 

proofs are presented in Section 3. In Section 4, 

simulation results are provided to show the proposed 

controller performances. Finally, this paper is concluded 

and future works are presented in Section 5. 
 

2 System Modeling 

   Here, nonlinear state-space models for PV, BESS, and 

SG are introduced in dq-frame. The microgrid studied in 

the present work consists of two PVs, two BESSs, one 

SG, and one consumer as illustrated in Fig. 1. 
 

2.1 PV Model 

   The block diagram of a PV connected to a microgrid 

by a three-phase inverter is shown in Fig. 2. Also, its 

dynamical model can be expressed as follows [9]: 

 
Fig. 1 A schematic of the microgrid studied. 

 
Fig. 2 PV block diagram connected to a microgrid by a three 

phase inverter [9]. 
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In (1), ia, ib, ic, ea, eb, and ec are three-phase currents and 

voltages, ipv and vpv are PV current and voltage, Ka, Kb, 

and Kc are inverter switch values (control inputs) which 

could be either zero or one, and R, L, and C are constant 

resistor, inductor and capacitor values, respectively. The 

PV voltage and current have an implicit static relation 

thoroughly explained in [18]. For the balanced three-

phase microgrids, it is possible to transform the system 

(1) to dq-frame as follows: 
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where Id, Iq, Ed, Eq, Kd, and Kq are currents, voltages, 

and control inputs in d and q directions, respectively. 

The transformation matrix from abc-frame to dq-frame 

is as follows: 
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where θ(t) = ω(t) + θ(0) is the rotating frame phase. In 
the dq-frame, active and reactive powers are determined 

using (4) and (5). 
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   Further, variables Kd and Kq are the new control inputs 

which can be computed by transforming the control 

signals from the abc-frame. 
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   As the variables Ka, Kb, and Kc belong within the 

[0, 1] interval, the control inputs Kd and Kq are bounded 

and this constraint cannot be omitted. Using (6), the 

signals Ka and Kb can be determined as follows. 
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   The control signal bounds in the dq-frame are time-

varying. Having time-invariant bounds on the control 

signals simplifies the design procedure. Assuming that 

Kd and Kq belong to the [–⅓, ⅓] interval, Ka, Kb, and Kc 

are guaranteed to always belong to the [0, 1] interval 

and the designed controller fulfills the input constraints 

of (7). The reverse transformation from the dq-frame to 

the abc-frame for the control signals might not be 

unique; based on 0 ≤ Ka, Kb, Kc ≤ 1, and (7), one can 

conclude that l4 ≤ Kc ≤ l3 (defined by (8)-(9)) is 
acceptable. Thus, an acceptable range for Kc exists, 

which is proposed to be the average current value as 

shown in (10). 
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Adopting (10), the control signals Ka and Kb can be 

uniquely determined by (7). 

 

2.2 BESS Model 

   The BESS consists of a battery, a three-phase inverter 

for connecting to the microgrid, and an RLC filter. In 

dq-frame, the BESS model is quite similar to the PV 

and can be presented as the following [2]: 
 

 1 1

1

1
d bd q bq

d dc

bd bd bq d

q dc

bq bd bq q

I M I M I I

E vR
I I I M

L L L

E vR
I I I M

L L L







  

    

    











 (13) 

 

In (13), Ibd, Ibq, and I1 are battery currents in dq-frame 

and its DC current respectively. Md and Mq are the 

inverter switch signals in the dq-frame which have the 

same constraints as Kd and Kq in the PV model and the 
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vdc is the I1 dependent battery voltage [19]. Note that Md 

and Mq are related and bounded; therefore, the stability 

analysis should be addressed by considering these 

constraints. Like PV, if a switch signal becomes greater 

than one it can be shown that the switch is generating 

and injecting power to the system, which is not possible. 

BESS active and reactive powers can be computed 

by (4) and (5). 

 

2.3 SG Model 

   SG is widely used in microgrids as a reliable power 
source. A common SG model used in the current study 

is adapted from [20-21], where it is presented in dq-

frame as, 
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where the following static relations between currents 

and fluxes are true. 
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where the parameters are defined as follows: 

iD, iQ: direct and transverse dampers currents; 

Tm, Te: mechanical and electric torque; 

D, Q: direct and transverse dampers total flux; 

abc, f: stator and main field total flux; 
rs, rf, and rD and rQ: stator, main field, and dampers 

resistances; 

Vabc, Iabc: output voltages and armature currents; 

vf, if: main field excitation voltage and main field 

current; 

LD, LQ: inductances of the direct and quadrature 

damper windings; 

Lf: inductance of the main field winding; 

Ld, Lq: inductances of the d-axis stator winding and 
q-axis stator winding; 

msf: mutual inductance between the field winding 

and the d-axis stator winding; 

msD: mutual inductance between the d-axis stator 

winding and the d-axis damper winding; 

msQ: mutual inductance between the q-axis stator 

winding and the q-axis damper winding; 

mfD: mutual inductance between the field winding 

and the d-axis damper winding. 

In (14), vf and Tm are the control inputs adopted in this 

work. 

 

3 Controller Design and Analysis 

   In this section, two nonlinear robust controllers 

designed for PVs and BESSs are presented. These 

proposed novel design methods are based on the control 

constraints. For SG, a super-twisting integral SMC is 

designed to regulate the SG. It is assumed that there are 

precise internal oscillators and an open-loop strategy [5] 

is adopted to control the phase and frequency. 

 

3.1 Controller Design for PV 

   In this subsection, a novel Lyapunov based controller 
inspired by the SMC strategy is proposed for PV. 

Although this controller is inspired by the SMC 

strategy, it does not have a sliding surface and it has 

different features. An important goal in the controller 

design for PV is to maximize the output power. There 

are different approaches to get maximum power from 

PVs which are referred to as maximum power point 

tracking (MPPT) methods. According to (2), only two 

control inputs are available while the system has three 

independent states. Therefore, two desired outputs can 

be defined for the system. In [2], a controller is designed 
and presented for a PV to generate desired active and 

reactive power outputs. As both desired power outputs 

are considered, it is not possible to track the maximum 

power point (MPP). It is therefore assumed that the 

MPP ( ,ref ref

pv pvv i ) is given and the controller task is to 

follow this point. This can be achieved by MPPT. 

Working at MPP sets the active output power to the 

maximum power. It is indeed appealing to generate a 

desired reactive power as well. As arbitrary reactive 

power generation is not possible, an algorithm is 

proposed to produce the closest possible reactive power 
to the desired value using inverter switch signals. 

   Assuming Ed = 0, the derivatives of the states at the 

equilibrium (steady-state condition) become zero and, 

thus, the following relations hold, 
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where Id
ref, Iq

ref, ref

pvv and ref

pvi are the reference values, 

and the system is settled at the desired values. In (16), it 

is assumed that ref

pvv and ref

pvi are known using an MPPT 

algorithm. Therefore, the unknown variables Id
ref, Iq

ref, 

Kd, and Kq must be determined. From the first two 

equations in (16), it can be concluded that, 
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By substituting (17) in the last equation of (16), (18) is 

obtained. 
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It can be concluded from (17) that, 
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Therefore, the following optimization problem is 
suggested to define unknown variable values in steady-

state. 
 

,

1 1
min , , 

3 3d q
d d q

K K
Q Q K K      

2 2

2 2 2 2 2 2
. .   ( )

ref

pv d qref

pv d q q

Rv L K RK
s t i K K E

R L R L



 


  

 
 

(20) 

where Qd is the desired reactive power. This 

optimization problem determines the system steady-

state and control signals which are referred to as Kd0 and 

Kq0. The solution of this optimization problem has 

feasible steady-state control signals at the MPP and 

minimizes the difference between the generated reactive 

power and its desired value, i.e. Qd. 

   Assuming that ( ,ref ref

pv pvv i ) is known and the 

optimization problem of (20) has a solution, system (2) 

with control signals Kd = Kd0 and Kq = Kq0 is globally 

asymptotically stable and the PV works at the MPP. 

Fig. 3 illustrates how PV interacts with the microgrid. 

The current and voltage regulation errors are defined 

as (21). 
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Considering (2), the error dynamics can be expressed as 
below, 
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Using (16), (23) yields from (22). 
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In the above relation, v pve and vi pe are implicitly 

related; as PV voltage increases, its current decreases 

monotonically and vice versa. This suggests that 

i pv v pve e   with a positive variable γ. Consider V(E) 

as a Lyapunov candidate, 
 

  TV E E PE  (24) 
 

in which, 
 

0 0
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(25) 
 

where L and C are the PV model inductor and capacitor 

values, respectively. 

   The derivative of this Lyapunov function is as 

follows. 
 

 

˙

0 0

, 0 0 0

0 0

T

R

V E E QE Q R



 
 

   
 
  

 (26) 

 

   The negative definiteness of the Lyapunov function 

guarantees the global asymptotic stability of this system. 

   It has thus been proven that feasible control signals 

Kd = Kd0 and Kq = Kq0 stabilize the system in MPP. It is 

worth noting that this system is globally exponentially 

stable if γ = 0 is considered, which is trivial using linear 

control theories. Assuming that Kd = Kd0 + Kd1 and 

Kq = Kq0 + Kq1 are feasible control signals with |Kd1| ≤ γ1 

and |Kq1| ≤ γ2. γ1 and γ2 can be zero in rare cases where 

|Kd0| = ⅓ or |Kq0| = ⅓. To prevent the occurrence of 
these cases, it can be assumed that –⅓ + ε ≤ Kd,  

 

 
Fig. 3 PV interaction with the microgrid. 
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Kq ≤ ⅓ – ε, where ε > 0 is a small constant, e.g. 0.05. 

Consequently, V̇(E) for this system becomes as follows, 
 

  2 2 2

1 1Re Re
d q v pv

I I I d d q qV E e f K f K       (27) 

 

with 
 

pvd v d I d pvf e I e v   (28) 

pvq v q I q pvf e I e v   (29) 
 

where fdKd1 and fqKq1 have to be negative for the sake of 

negative definiteness of the derivative of the Lyapunov 

function. In addition, these control signals should satisfy 

their constraints which are |Kd1| ≤ γ1 and |Kq1| ≤ γ2. 

Inspired by the SMC strategy, it is suggested that 

Kd1 = -γ1 sign(fd) and Kq1 = -γ2 sign(fq). 

   By defining the globally stabilizing control signals 

Kd = Kd0 – γ1 sign(fd)α and Kq = Kq0 – γ2 sign(fq)α with α 

function as, 
 

 1

0 3 3( ,  0
pvI d I q vsat e e e       (30) 

 

for which sat0
1(.) is a saturation function defined as, 
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 (31) 

 

and using (27), the Lyapunov derivative becomes as 

expressed in (32). 
 

2 2 2

1 2  
d q v pv

I I I d qV Re Re e f f           (32) 

 

   The system with Kd1 = Kq1 = 0 was globally 
asymptotically stable and the above reasoning shows 

that the above control signal definition makes Lyapunov 

derivative more negative. Therefore, the system remains 

asymptotically stable and control signals meet their 

constraints. 

   The proposed controller has many advantages. The 

control signals are feasible and guarantee global 

asymptotic stability. In addition, system robustness is 

fortified by making the derivative of the Lyapunov 

function more negative. The suggested controller uses 

sign function which makes the system robust, similar to 
SMC. α gain is used in the control signals, to reduce the 

sign function coefficient as the tracking errors converge 

to zero. In order to prevent fluctuations in the control 

signals, small γ1 and γ2 should be chosen. These design 

parameters are bounded based on Kd and Kq limitations 

and Kd0 and Kq0; nevertheless, Kd and Kq can be 

computed with arbitrary small positive gains, γ1 and γ2, 

and then the resulted control signals are saturated for the 

sake of feasibility. 

 

3.2 Controller Design for BESS 

   The controller proposed for BESS is somehow similar 

to the design presented earlier. The BESS can exchange 

power with the microgrid in both charging and 

discharging modes. Therefore, battery charge or 

discharge current and exchanged active power are 

known. Hence, the controllers’ task is to provide 

suitable control signals to keep the active power at its 

desired value and at the same time minimize the 

reactive power difference with its desired value. In 

steady-state, (13) can be expressed as follows: 
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 (33) 

 

In (33), 1

refI and 
ref

dcv are assumed to be known; hence, 

the reference currents ref

bdI and ref

bqI  control signals Md 

and Mq are unknown variables. From the last two 

equations in (33), the currents 
ref

bdI and ref

bqI can be 

computed as presented in (34). 
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 (34) 

 

Using (34) and the first equation of (33), 1

refI is 

determined as (35). 
 

 2 2
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ref
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d q q
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
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   The following optimization problem is therefore 

suggested to obtain the unknown variable values in 

steady-state. 
 

,

1 1
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(36) 

 

The above problem minimizes the difference between 

the generated reactive power and its desired value while 
it determines steady-state currents and control signals to 

settle at the steady-state point. The resulted steady-state 

control signals are referred to as Md0 and Mq0. 

System (13) with constant control signals Md0 and Mq0 is 

globally asymptotically stable and BESS settles at 
ref

dc dcv v , 1 1  refI I , 
ref

bd bdI I and ref

bq bqI I . Fig. 4 

illustrates how BESS interacts with the microgrid. 

   By solving similar expressions as for the PV control 

system, the below relation can be obtained for BESS 

control systems. 
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1

2 2 2

1 2bd bqI I I bd bqV e e e f f          (37) 

 

where eI1, ebd, and ebq are current regulation error states, 

and 
 

 

 

1

1

12 22 32

11 12 13

1

bd bq

bd bq

dc

bd I I I

bd

I I I

v
f P e P E P e

L

I
P e P e P e



   

  

 

 

 

(38) 

 

 

1

1

13 23 33

11 12 13

1

bd bq

bd bq

dc

bq I I I

bq

I I I

v
f P e P E P e

L

I
P e P e P e



   

  

 

 

 

(39) 

  1

1

0 4 4,   0
bd bqI I Isat e e e       (40) 

 

where Pij is the i-th and j-th column of the matrix 

satisfying the Lyapunov equation, and αi and γi are like 

to those for PV. 

The proposed controller for BESS is feasible and 

guarantees global asymptotic stability. It has similar 

features as the PV controller, which was discussed in 

the former subsection. 

 

3.3 SG Controller Design 

   The SG controller design aimed at regulating 

frequency and power is presented next. First, the phase 

and frequency, which are virtually decoupled from the 

rest of the system states of (14), are regulated. If the 

desired phase, δd, is known, the tracking errors and the 

input torque are defined as follows. 
 

de     (41) 

0ee     (42) 

m e

J
T T u

p
    (43) 

 

   Then, the double integrator error dynamics can be 

written as follows, 
 

 e e   (44) 

e u   (45) 
 

An integrator is added for eliminating any phase bias 

and the linear quadratic regulator (LQR) theory is used 

to design an optimal control law. 

 

 
Fig. 4 BESS interaction with the microgrid. 
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(46) 

 

   Then, the controller gains are computed to minimize 

the following cost function [22]. 
 

 1 1 1 1
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,  , 0T T

sg sgJ e Q e u R u dt Q R
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   The solution of this optimization problem will be in 

the form of u0 = –Kesg. Assuming that the disturbance 

d(t) is added to the control signal u, the designed 

integral LQR controller robustness is increased using 

the super-twisting integral sliding mode control strategy 

which can eliminate any matched disturbance with a 

bounded derivative [23]. When d(t) = 0 the following 

system stabilizes the unperturbed system with u0. 
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   The control signal presented in (49) stabilizes (48) in 

the presence of an unknown time-varying disturbance, 

d(t). 
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   In the present work, a robust optimal controller is 

designed to regulate the SG phase and frequency at their 

desired values. The remaining dynamics of SG are 

linear and it is straightforward to prove its stability with 

a constant vf. 
   It is assumed that Ed = 0 in the microgrid. However, 

because of the phase shift δ in SG, dq-voltages obey the 

following relations. 
 

 

 

2 2
cos cos cos

3 32

3 2 2
sin sin sin

3 3

a

d

b

q

c

vt t t
v

v
v

t t t v

 
     

 
     

    
          

                            
    

 

(50) 

   cos sin

02 2
cos sin

3 3

2 2
cos sin

3 3

a

b

q

c

t t
v

v t t
E

v

t t

 

 
 

 
 

 
 


  
      

         
       

      
      

    

 

(51) 
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The above equations lead to the following relation 

between dq-voltages of the grid and SG. 
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Therefore, the SG active and reactive powers in steady-

state are computed as follows. 
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(53) 

 

Consequently, desired vf and δ values can be obtained 

from (52) as the desired active and reactive powers of 

SG are given. The designed robust optimal controller is 

able to eliminate the described matched uncertainties 

and any bias in phase regulation. Fig. 5 illustrates how 

SG interacts with the microgrid. 

 

4 Numerical Simulations 

   Four scenarios are considered to show the proposed 

controller stability and performance. In the first three 

scenarios, the proposed controllers for PV, BESS, and 
SG are separately simulated. Then, in the last scenario, a 

microgrid with two PVs, two BESSs, and one SG is 

simulated to show how the controllers interact. It is 

worth noting that the microgrid stability in islanded 

mode is not considered and it has just been proven that 

each DER is stable when the grid voltage is at its 

desired operating point; nevertheless, the simulation 

results for the last scenario prove that the islanded 

microgrid is stable as well. 

 

4.1 PV Simulation 

   The PV parameters and proposed control strategy 

values used in the calculations are given in Table 1 and 

(50) and the numerical simulation results are presented 

in Fig. 6. A very short system transient time (less than 

50ms) is seen, and the desired voltage and currents are 

tracked. This indicates that the system is working at 

MPP which indicates that the method is implementable 

as the control signals are within their feasible bounds. It 

is worth noting that although control signals are non-

continuous, the implementation is possible simply  

 

 
Fig. 5 SG interaction with the microgrid. 

because the actuators are inverter switches. The system 

investigated here is similar to the system simulated 

in [2]. However, in [2] the control signals were not only 

out of their feasible range, but they were also sometimes 

non-definite because the proposed controller becomes 

singular for zero vpv or Iq. 
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(54) 

 

   In Fig. 6, the effectiveness of the proposed PV 

controller in converging the currents and voltages to 

their reference signals is depicted. It is also noted that 

the control signals are within their feasible bounds. 
 

4.2 BESS Simulation 

   BESS and corresponding controller parameters used 

in the second scenario are presented in Table 2, (51) 

and (52). The numerical simulation results are presented 

in Fig. 7. 
 

1

0

2

0

4

0.08
126.583 0.237

,   ,   0.08
56.723 0.333

0.05

ref
dbd

ref
qbq

MI

MI







   
           

             
         

   
 

(55) 

 

Table 1 PV parameters used in the calculations. 

Parameter Value Parameter Value 

R 0.1 Ω Tref 322 K 
L 0.01 H Ki 0.003 A/K 
C 0.0001 F Tc 298 K 
Eg 1.11 eV k 1.38×10-23 J.K-1 

Eq 660 V q 1.6×10-19 C 
Isc 3.8 A Rsh 1365 Ω 
Np 20 Rs 0.21 Ω 
Ns 20 Irs 10-11 A 

ref

pv
v  750 V s 1000 W/m2 

ref

pv
i  73.34 A A 1.2 

 

  
(a) (b) 

  

(c) (d) 
Fig. 6 PV simulation results; a) PV states, b) PV current, 

c) Control signals in abc-frame, and d) Generated power by PV. 
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Table 2 BESS parameters. 

Parameter Value Parameter Value Parameter Value Parameter Value 

R 0.1 Ω δ* 1.4 ε 1.29 Cθ 15 Wh/°C 
L 0.01 H Em0 804.6 V θf -40 °C Rθ 0.2 °C/W 
C 0.0001F KE 5.8×10-4 V/°C C0

* 261.9 Ah R20 0.015 Ω 
I* 49 A θa 25 °C Kc 1.18 A22 -8.45 
R10 0.0007Ω A0 -0.3 τ1 5000 s A21 -0.8 

 

  
(a) (b) 

  
(c) (d) 

Fig. 7 BESS simulation results; a) BESS states, b) BESS voltage, c) Control signals in abc-frame, and d) Generated power by BESS. 
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 (56) 

 

   Fig. 7 validate the effectiveness and fast convergence 

of the proposed controller. As shown in Fig. 7(a), the 

desired signals converge in less than 50ms. Also, the 

control signals are within feasible bounds. BESS 

voltage is slowly decreasing, which indicates that the 
battery is discharging, as expected. It is clear that 

control signals are suitable and the designed controller 

is implementable. 

 

4.3 SG Simulation 

   In this subsection, the simulation results for an SG are 

presented. It is assumed that a three-phase load is 

connected to the generator and the load value is 

calculated using the desired active and reactive powers 

with the desired voltage. SG simulation results are 

presented in Fig. 8, where it is seen that the system 

successfully generates the desired power and regulates 

the phase and frequency. 

   It can be concluded from Fig. 8 that the proposed 

method converges very well to reference values, without 

too much overshoot within a reasonable time frame. 

 

4.4 Microgrid Simulation 

   Finally, an islanded microgrid consisting of two PVs, 

two BESSs, and one SG is considered. The microgrid 
load is connected in parallel with the DERs and is 

considered to be 700 kW with 0.8 power factor. 

Therefore, the microgrid reactive power is 525kVar and 

with Ed = 0V and Eq = 660V as desired voltages in the 

dq-frame and the load impedance should be ZL = 0.5974 

+ j0.4480 Ω. It is assumed that the active load increases 

to 800 kW and the reactive power decreases to 325kVar 

at t = 2s, which results in a new load impedance of
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8 SG simulation results; a) SG frequency regulation, b) SG power regulation, c) SG voltages in abc-frame, d) SG currents in 

abc-frame, e) SG control signals, and f) Phase error in SG. 

 

ZL = 0.7010 + j0.2848 Ω. 
   All proposed controllers for PV, BESS, and SG are 

local, which require a PMS to generate reference signals 

for the local controllers as voltage regulation is 

considered. The proposed PV controller needs the 

reference voltage and current points, which can be 

estimated using an MPPT algorithm. It is assumed that 
 

  73.34 ref

pvi A ,  

  750 ref

pvv V , and Qd = 0VAR are PV 

reference signals. The controller and the nominal PV 

parameters are the same as in section 4-1. Further, the 

BESS parameters are as presented in 4-2. The desired 

SG power generation is determined as the difference 
between the total supplied powers of the PVs and the 

BESSs, and the overall microgrid consumption. The 

simulation results for this scenario are presented in 

Fig. 9, where the DERs’ initial conditions are assumed 

to be zero. 

   In Fig. 9, a good tracking of the reference frequency, 

voltage, and currents with reasonable overshoots, even 

as the active and reactive load change, is seen. The 

frequency and load voltage overshoots as the load 

changes are less than 0.3% and 2.3%, respectively. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 9 Microgrid simulation results; a) SG frequency regulation, b) Load voltages in dq-frame, c) Load voltages in abc-frame, d) SG 
control signals, and e) SG control signals. 

 

5 Conclusions and Future Works 

   In this paper, distributed nonlinear robust controllers 

are proposed for PV, BESS, and SG. Along with the 

robustness and global stability of the proposed 

controllers, suitable control signals missing in previous 

related publications were accounted for. In the proposed 

method, advanced control strategies like nonlinear 

theories, Lyapunov based design, SMC and its higher 
order version, perturbation theories, and optimal control 

strategies were creatively combined to control each 

DER in an islanded microgrid. A load change was 

investigated by simulation, which showed that the 

proposed controller is robust against these changes. 

   For future works, the authors are going to implement 

phase difference as a control input to the proposed PV 

and BESS controllers, which is similar to what was used 

to control the SG in this study. Another goal is to adopt 

MPPT for PV and show how it matches with the 

controller and PMS. In this paper, it is assumed that the 
target current and voltage values for PVs are known, 

and in future studies, the authors are going to integrate 

an MPPT strategy to the proposed controller. Finally, as 

measurement and actuator delays affecting stability 
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analysis exist in microgrids the authors would like to 

address this in future studies. 
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